

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Fluid Mechanics
Course Code	21ME43
Course Incharge	Dr. Salcem Khan
Academic year	2022-2023
Semester	4 th
CIE#	IA - 1
Set	AN BD
So	crutiny parameters
Whether questions are according to assessment plan?	Yes ☑ No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes ☑ No ☐ ; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ☑ No ☐ ; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No □; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes ☑ No ☐; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes ☑ No ☐; If No, Suggestions:
Difficulty level	Very High □ High □ Moderate ☑ Low□
Percentage of Similarity questions in Set A & B	20%
Final decision	Accepted without corrections□
	Accepted with minor corrections□
	Not accepted□

Signature with date of CIE Question paper setter

Name and Signature with date of CIE Question paper Scrutiniser

CD. Nagaprasad KS

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 FIRST INTERNAL TEST QUESTION PAPER 2022-23 EVEN SEMESTER

SET: A

Degree : B.E

Branch - Stream : ME-ME

Course Title: Fluid Mechanics

Duration: 60 Minutes

USN

Semester: IV

Course Type / Code: Integrated/21ME43

Date: 27/06/2023

Max Marks: 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	R-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evalu Questions	Mark s	СО	K- Level
= = =	PART-A			
1(a)	Define the following terms: i) Absolute pressure ii) Gauge pressure iii) Simple manometer iv) differential manometer.	4	CO1	K2
(b)	Explain briefly the working principle of Bourdon pressure gauge with a neat sketch.	4	CO1	К2
(c)	The left limb of a mercury U-tube manometer is open to atmosphere and the right limb is connected to a pipe carrying water under pressure. The centre of the pipe is at the level of the free surface of mercury. Find the difference in level of mercury limbs of U-tube if the absolute pressure of water in the pipe is 14.5 m of water, atmospheric pressure is 760 mm of Hg.	4	CO1	К3
	OR			(6)
2(a)	Derive an expression for total pressure and centre of pressure on inclined plane surface completely submerged in static mass of fluid.	8	CO1	КЗ
(b)	An equilateral triangle of side 2.5 m is immersed completely in water with one of its axis of symmetry parallel to the water surface. Its top edge is at 1 m below free surface of water. Determine the total pressure and position of centre of pressure.	4	CO1	К3
	PART –B			
3(a)	Obtain an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of the jet	4	CO2	К3
(b)	A jet of water of diameter 50 mm moving with a velocity of 40 m/s, strikes a curved fixed symmetrical plate at the centre. Find the force exerted by the jet of water in the direction of the jet, if the jet is deflected through an angle of 120° at the outlet of the curved plate.	4	CO2	К3
	OR			
4(a)	Derive an expression for the force exerted by a jet of water on a moving curved plate in the direction of the jet.	4	CO2	К3
(b)	A jet of water of diameter 10 cm strikes a flat plate normally with a velocity of 15 m/s. The plate is moving with a velocity of 6 m/s in the direction of the jet and away from the jet. Find: i) the force exerted by the jet on the plane. ii) work done by the jet on the plate per second.	4	CO2	К3

Name & Signature of Course In charge

Name & Signature of

Module Coordinator

HOD

Principal

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 FIRST SESSIONAL TEST 2022 - 23(EVEN SEMESTER)

SCHEME AND SOLUTION (SET A)

Degree

B.E

Semester: IV

Branch-Stream : ME-ME **Course Title**

: Fluid Mechanics

Course Type / Code: Integrated/21ME43

Max Marks: 20

Q. No	SOLUTION	MADIC
	PART-A	MARKS
1(a)	Absolute pressure is the pressure of having no matter inside a space, or a perfect vacuum	
	Gauge pressure is the pressure relative to atmospheric pressure. For the pressures above atmospheric pressure, gauge pressure is positive. For the pressures below atmospheric pressure, gauge pressure is negative.	04X01= 04
	A simple manometer consists of a tubular arrangement where one end of the tube is connected to the point in the fluid, whose pressure is to be determined	~ .
	and the other end is kept open to the atmosphere.	
	Differential Manometers are devices used for measuring the difference of pressure between two points in a pipe or in two different pipes	
1(b)	Circular scale.	
	Pointer	
	Pinion Free end (Closed end)	
	X Connecting link	
	Oval shaped bourdon tube Fixed end Goøred sector	
	Liquid under pressure 'P'	
	Sketch-02	04
1(c)	Explanation-02	04
	X Water	
	Mercury $P_{abs} = 9810 \times 14.5 = 142.245 \times 10^{3} \text{ N/m}^{2} - 1/2 \\ P_{atm} = 13.6 \times 9810 \times 0.76 = 101.3961 \times 10^{3} \text{ N/m}^{2} 1/2 \\ P_{abs} = P_{gauge} + P_{atm}$	04
	$P_{\text{gauge}} = P_A = 142.245 \times 10^3 - 101.3961 \times 10^3 = 40.8488 \times 10^3 \text{ N/m}^201 \times 100.3304 \text{ m}^202$	

	F_{τ} = Rate of change of momentum in the direction of force	
	Initial momentum — Final momentum	
	Time	
	(Mass × Initial velocity – Mass × Final velocity)	
	Time	
	= Mass Time [Initial velocity - Final velocity]	
	= (Mass/sec) × (velocity of jet before striking - velocity of jet after striking)	
	$= \rho a V[V - 0] \qquad (\because \text{ mass/sec} = \rho \times a \ V)$	
	$= \rho a V^2$	THE SECOND
	Skech 02	
	Derivation 02	
3(b)		
- 1	A. C.	
	Diameter of the jet, $d = 50 \text{ mm} = 0.05 \text{ m}$	
	:. Area, $a = \frac{\pi}{4} (.05)^2 = 0.001963 \text{ m}^2$	
	190	
	Velocity of jet, $V = 40 \text{ m/s}$	
	Angle of deflection = 120°	04
	the angle of deflection = $180^{\circ} - \theta$ $180^{\circ} - \theta = 120^{\circ} \text{ or } \theta = 180^{\circ} - 120^{\circ} = 60^{\circ}$	
	$\therefore 180^{\circ} - \theta = 120^{\circ} \text{ or } \theta = 180^{\circ} - 120^{\circ} = 60^{\circ}$ Force exerted by the jet on the curved plate in the direction of the jet is given by	
	$F_{\rm c} = \rho a V^2 \left[1 + \cos \theta\right]$	
	$= 1000 \times .001963 \times 40^{2} \times [1 + \cos 60^{\circ}] = 4711.15 \text{ N}.$	
4(a)	= 1000 × 1001700 × 40 × (1 + 100 00) = 4711.15 N.	4.
,	$(V-u)$ $(V-u)\sin\theta$	1.10
	θ	
	(V − u) cos θ	
		0.4
	V	04
	ISTOCHUTED)	
	JET OF WATER	
	MOVING CURVED	
	PLATE	

		To be a second
	Mass of the water striking the plate = $\rho \times a \times \text{Velocity}$ with which jet strikes the plate = $\rho a(V - u)$	
	. Force exerted by the jet of water on the curved plate in the direction of the jet,	
	F_x = Mass striking per sec × [Initial velocity with which journal plate in the direction of jet – Final velocity]	
	$= \rho a(V-u) \left[(V-u) - (-(V-u)\cos\theta) \right]$	
1	$= \rho a(V-u) [(V-u) + (V-u) \cos \theta]$	
	$= \rho a(V-u)^2 \left[1 + \cos \theta\right]$	
	Work done by the jet on the plate per second	
Ĭ	$= F_x \times \text{Distance travelled per second in the direction } \bullet$	
	$= F_x \times u = \rho a (V - u)^2 \left[1 + \cos \theta \right] \times u$ $= \rho a (V - u)^2 \times u \left[1 + \cos \theta\right]$	
	Skech 02	
	Derivation 02	
	d= 10 cm= 0.1 m	
1	$a=0.007854 \text{ m}^2$	
	V=15 m/s, u=6 m/s	1
	$Fx = \rho a(V-u)^2 = 636.17 \text{ N} 02$	04
	W.D = Fx X u = 3817.02 N-m/s 02	

Signature of Course In-charge

Module In-charge

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Fluid Mechanics
Course Code	21ME43
Course Incharge	Dr. Saleem Khan
Academic year	2022-2023
Semester	4 th
CIE #	IA - 1
Set	A□ B 🗹
Sc	erutiny parameters
Whether questions are according to assessment plan?	Yes No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes ☑ No □; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ☑ No ☐ ; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No ☐ ; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes ☑ No ☐ ; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes ☑ No ☐; If No, Suggestions:
Difficulty level	Very High □ High □ Moderate ☑ Low□
Percentage of Similarity questions in Set A & B	20%.
Final decision	Accepted without corrections□
	Accepted with minor corrections□
	Not accepted□

Signature with date 226 of CIE Question paper setter

Name and Signature with date of CIE Question paper Scrutiniser

Dr Nagapawad

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 FIRST INTERNAL TEST QUESTION PAPER 2022-23 EVEN SEMESTER

SET: B

Degree B.E

Branch - Stream: ME-ME

> Course Title: Fluid Mechanics

60 Minutes Duration

USN

Semester: IV

Course Type / Code: Integrated/21ME43

Date: 27/06/2023

Max Marks: 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Mark s	СО	K- Level
7	PART-A			
1(a)	Define the following terms: i) Buoyancy ii) Centre of buoyancy iii) Metacentre iv) Meta-centric height.	4	CO1	K2
(b)	Explain the stability of floating bodies.	4	CO1	K2
(c)	The left limb of a mercury U-tube manometer is open to atmosphere and the right limb is connected to a pipe carrying water under pressure. The centre of the pipe is at the level of the free surface of mercury. Find the difference in level of mercury limbs of U-tube if the absolute pressure of water in the pipe is 14.5 m of water, atmospheric pressure is 760 mm of Hg.	4	CO1	К3
1	OR	1		
2(a)	Derive an expression for total pressure and centre of pressure for a vertically immersed surface.	8	CO1	К3
(b)	A triangular plate of 1 m base and 1.5 m altitude is immersed in water. The plane of the plate is 30° with free water surface and base is parallel to and at a depth of 2 m from water surface. Find the total pressure on the plate and the position of centre of pressure.	4	CO1	К3
	PART –B	his his		
3(a)	Derive an expression for the force exerted by a jet of water on a fixed curved plate in the direction of the jet	4	CO2	К3
(b)	A jet of water of diameter 50 mm moving with a velocity of 40 m/s, strikes a curved fixed symmetrical plate at the centre. Find the force exerted by the jet of water in the direction of the jet, if the jet is deflected through an angle of 120° at the outlet of the curved plate.	4	CO2	К3
Mark 22	OR	1		
4(a)	Obtain an expression for the force exerted by a jet of water on a moving flat plate in the direction of the jet.	4	CO2	К3
(b)	A jet of water of diameter 10 cm strikes a flat plate normally with a velocity of 15 m/s. The plate is moving with a velocity of 6 m/s in the direction of the jet and away from the jet. Find: i) the force exerted by the jet on the plane. ii) work done by the jet on the plate per second.	4	CO2	КЗ

of Course In charge

Module Coordinator

A. Nagabracad KS)

Principal Subted

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 FIRST SESSIONAL TEST 2022 - 23(EVEN SEMESTER)

SCHEME AND SOLUTION (SET B)

Degree

B.E

Fluid Mechanics

Semester: IV

Branch-Stream : ME -ME Course Title

Course Type / Code: Integrated/21ME43

Max Marks: 20

Q. No	SOLUTION	MARKS
16.	PART-A	
1(a)	Buoyancy is the tendency of an object to float in a fluid The centre of buoyancy is the centre of gravity of the volume of water displaces by the body when immersed in the water. The metacentre remains directly above the centre of buoyancy regardless of the tilt of a floating body, such as a ship The meta-centric height is a measurement of the initial static stability of a floating body. It is calculated as the distance between the centre of gravity of a ship and its metacentre.	04X01= 04
1(b)	DISTURBING COUPLE W G G B B B B B B B F B B B B B	
	(a) Stable equilibrium M is above G (b) Unstable equilibrium M is below G. Sketch-02 Explanation-02	04
1(c)	Water $P_{abs} = 9810 \times 14.5 = 142.245 \times 10^3 \text{ N/m}^2 - 1/2$ $P_{atm} = 13.6 \times 9810 \times 0.76 = 101.3961 \times 10^3 \text{ N/m}^2 1/2$ $P_{abs} = P_{gauge} + P_{atm}$ $P_{gauge} = P_A = 142.245 \times 10^3 - 101.3961 \times 10^3 = 40.8488 \times 10^3 \text{ N/m}^2 01$ $X = 0.3304 \text{ m} 02$	04

3(b) V	T
Diameter of the jet, $d = 50 \text{ mm} = 0.05 \text{ m}$	
$\therefore \text{ Area,} \qquad a = \frac{\pi}{4} (.05)^2 = 0.001963 \text{ m}^2$	
Velocity of jet, $V = 40 \text{ m/s}$	-
Angle of deflection = 120°	
the angle of deflection = $180^{\circ} - \theta$	04
$180^{\circ} - \theta = 120^{\circ} \text{ or } \theta = 180^{\circ} - 120^{\circ} = 60^{\circ}$	
Force exerted by the jet on the curved plate in the direction of the jet is given by	
$F_{\epsilon} = \rho a V^2 \left[1 + \cos \theta \right]$	
$= 1000 \times .001963 \times 40^{2} \times [1 + \cos 60^{\circ}] = 4711.15 \text{ N}.$ $(V - u)$	
Mass of water striking the plate per sec $= \rho \times \text{Area of jet } \times \text{Velocity with which jet strikes the plate}$ $= \rho \alpha \times [V - u]$ $\therefore \text{ Force exerted by the jet on the moving plate in the direction of the jet,}$ $F_t = \text{Mass of water striking per sec}$ $\times [\text{Initial velocity with which water strikes} - \text{Final velocity}]$ $= \rho a(V - u) [(V - u) - 0] \qquad (\because \text{Final velocity in the direction of jet is zero})$ $= \rho o(V - u)^2$ Skech 02 Derivation 02	04
$a=0.007854 \text{ m}^2$	
$V=15 \text{ m/s}, u=6 \text{ m/s}$ $Ex = 20(V_{10})^{2} - 626 17 \text{ N}$	04
$Fx = \rho a(V-u)^2 = 636.17 \text{ N} 02$ $W D = Fx Y u = 3817.02 \text{ N} 02$	04
W.D= Fx X u= 3817.02 N-m/s 02	

Signature of Course In-charge

Module In-charge

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Fluid Mechanics
Course Code	21ME43
Course Incharge	Dr. Saleem Khan
Academic year	2022-2023
Semester	4 th
CIE#	IA - 2
Set	AN B 🗆
	crutiny parameters
Whether questions are according to assessment plan?	Yes ✓ No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes ☑ No ☐; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ☑ No □; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No ☐; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes ☑ No ☐ ; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes ☑ No □; If No, Suggestions:
Difficulty level	Very High □ High □ Moderate ☑ Low□
Percentage of Similarity uestions in Set A & B	30%
inal decision	Accepted without corrections
*	Accepted with minor corrections□
	Not accepted□

Signature with date of CIE Question paper setter

Name and Signature with date of CIE Question paper Scrutiniser.

CDr. Nagapralad KS

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 SECOND INTERNAL TEST QUESTION PAPER 2022-23 EVEN SEMESTER

SET: A

Degree : B.E

Branch - Stream : ME-ME

Course Title: Fluid Mechanics

Duration : 60 Minutes

USN

Semester: IV

Course Type / Code: Integrated/21ME43

Date: 01/08/2023

Max Marks: 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	со	K- Level
	PART-A			
1(a)	Derive Darcy's equation for head losses due to friction in a circular pipe.	8	CO3	K3
(b)	A horizontal circular pipe is of 50 mm diameter and 750 m long maintains water flow rate of 0.03 m ³ /min. Calculate the head loss due to friction and the power required to maintain the flow if μ =1.14X10 ⁻³ N-s/m ² and f= 0.008.	4	CO3	К3
	OR	100	11.7	
2(a)	What are the losses that occur in pipes. Give the expressions for different minor energy losses.	4	CO3	К3
(b)	A horizontal pipeline, 50 m long, is connected to a reservoir at one end and discharges freely in to the atmosphere at the other end. For the first 25 m length from the reservoir the pipe has a diameter of 15 cm and it has a square entrance at the reservoir. The remaining 25 m length of pipe has a diameter of 30 cm. the junction of the two pipes is in the form of a sudden expansion. The 15 cm has a gate valve (K=0.2) in fully open condition. If the height of water surface in the tank is 10 m above the centerline of the pipe, estimate the discharge in the pipe by considering the Darcy's Weisbach factor f=0.02 for both the pipes (Include all minor losses in the calculations)	8	CO3	К3
	PART –B			
3(a)	Obtain Bernoulli's equation from Euler's equation of motion.	4	CO2	К3
(b)	Check whether the following equations (with their usual notations) are dimensionally homogeneous or not. i) $h_i = 4 \text{flV}^2/2 \text{gd}$ ii) $P = \gamma QH$	4	CO4	К3
	OR			
4(a)	A pipe 5 m long is inclined at an angle of 15 ⁰ with the horizontal. The smaller section of the pipe which is at a lower level is of 80 mm diameter and the larger section of the pipe is of 240 mm diameter. Determine the difference of pressure between the two sections, if the pipe is uniformly tapering and the velocity of water at the smaller section is 1 m/s.	4	CO2	КЗ
(b)	Using Rayleigh's method find the expression for power P, developed by a pump when P depends upon the head H, the discharge Q and specific weight w of the fluid.	4	CO4	КЗ

Name & Signature
of Course In charge

Name & Signature of Module Coordinator

Nagarasad KS

HOD 26 7 25

Principal

rincipal

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 SECOND SESSIONAL TEST 2022 - 23 (EVEN SEMESTER)

SCHEME AND SOLUTION (SET A)

Degree

B.E

Semester: IV

Branch-Stream : ME -ME Course Title : Fluid Mechanics

Course Type / Code: Integrated/21ME43

Max Marks: 20

Q. No	SOLUTION	MARKS
	PART-A	
1(a)		
	$\rightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$	08
Regulation of the Control of the Con	F	
	1 L 2	
1.1.	Fig: uniform horizontal pipe with a steady flow of fluid Sketch-02	
11. 12.	$h_f=4fIV^2/2gd$ Derivation- 06	
1(b)	Q=AV	
	V = 0.2546 m/s - 01	
	Re= ρ Vd/μ, \mathbb{I} Re= 11.1667X10 ³ 01	
	$h_i = 4f V^2 / 2gd$, $h_i = 1.5858 \text{ m} - 01$	
2(1)	P= γQh _f =7.7783 W01 Major and Minor head losses in pipes	04
2 (a)	Major and Winor head losses in pipes Major head losses in pipes- i) Darcy's and $(h_i=4fIV^2/2gd)$	
	ii) Chezy's equation (V= C vmi)	02+02=
	Minor head losses in pipes- i) $he=(V_1-V_2)^2/2g$	04
	ii) $hc = 0.375 V_2)^2/2g$	
	iii) $h_i = 0.5 \text{ V}^2/2\text{g}$	
	iv) ho=V ² /2g	
2(b)	$V_1=4V_2-01$ $h_i=8(V_2)^2/2g_1h_{fittings}=3.2(V_2)^2/2g, h_f=213.33(V_2)^2/2g, he=9(V_2)^2/2g=-05$	
	$h_i = \delta(V_2) / 2g$, $h_{\text{fittings}} = 3.2(V_2) / 2g$, $h_{\text{fit}} = 213.33(V_2) / 2g$, $h_{\text{c}} = 9(V_2) / 2g = 0.3$ $h_{\text{c}} = 6.66(V_2)^2 / 2g$	
	$V_2 = 0.9 \text{ m/sec}01$	08
	$Q = 0.0636 \text{ m}^3/\text{sec} - 01$	1
	PART-B	
3 (a)		
	dp/p+gdz+vdv=0 Euler's equation01	
	p/ρg+v²/2g+Z=Constant Bernoulli's equation03	04

3(b)	$h_f=4flV^2/2gd$ [L]=[L] LHS=RHS $\mathbb I$ Equation is dimensionally homogeneous.	02+02
i).	$P = \gamma QH$ $[ML^2T^3] = [ML^2T^3]$ LHS=RHS [Equation is dimensionally homogeneous.	04
4(a)	$A_1=5.026X10^{-3} \text{ m}^2$ $A_2=0.045 \text{ m}^2$ $V_2=0.11 \text{ m/sec} 01$ $Z_2=5\sin 15^0=1.294 \text{ m} 01$ $P_1-P_2=12209.69 \text{ N/m}^2 \text{ or } 12.20 \text{ KN/m}^2 02$	04
4(b)	$P=K H^{a} Q^{b} w^{c}$ $[ML^{2}T^{-3}]=K [L]^{a} [L^{3}T^{-1}]^{b} [ML^{-2}T^{-2}]^{c} 02$ $c=1, a=1, b=1$ $P=K H^{1} Q^{1} w^{1} 02$	04

Signature of Course In-charge

Module In-charge

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

harmonia in the second and the secon	
Course Name	Fluid Mechanics
Course Code	21ME43
Course Incharge	Dr. Saleem Khan
Academic year	2022-2023
Semester	4 th
CIE#	IA - 2
Set	A□ B 🗹
S	crutiny parameters
Whether questions are according to assessment plan?	Yes ☑ No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes ☑ No ☐; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ☑ No □; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No □; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes □ No □; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes □ No □; If No, Suggestions:
Difficulty level	Very High □ High □ Moderate □ Low□
Percentage of Similarity puestions in Set A & B	30%
inal decision	Accepted without corrections☑
	Accepted with minor corrections□
	Not accepted□

Signature with date of CIE Question paper setter

Name and Signature with date of CIE Question paper Scrutiniser

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 SECOND INTERNAL TEST QUESTION PAPER 2022-23 EVEN SEMESTER

SET: B

Degree B.E

Branch - Stream : ME-ME

Course Title:

Fluid Mechanics

Duration **60 Minutes** USN

Semester: IV

Course Type / Code: Integrated/21ME43

Date: 01/08/2023

Max Marks: 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	СО	K- Level
	PART-A			
1(a)	Derive Chezy's equation for loss of head due to friction in pipes.	4	CO3	K3
(b)	Two reservoirs are connected by a pipeline consisting of two pipes, one of 15 cm diameter and length 6 m and other of diameter 22.5 cm and 16 m length. If difference of water levels in the two reservoirs is 6 m, calculate the discharge. Take coefficient of friction f= 0.04.	8	CO3	К3
	OR			- 7
2(a)	For a flow through pipe, derive Darcy-Weisbach equation.	8	CO3	К3
(b)	A 5 cm diameter pipe takes off abruptly from a large tank and run 8 m, then expands abruptly to 10 cm diameter and runs 45 m and next discharge directly into open air with a velocity of 1.5 m/s. Compute the necessary height of water surface above the point discharge. Take f=0.0065 in the Darcy equation.	4	CO3	К3
	PART –B			10.451
3(a)	A pipe 5 m long is inclined at an angle of 15 ⁰ with the horizontal. The smaller section of the pipe which is at a lower level is of 80 mm diameter and the larger section of the pipe is of 240 mm diameter. Determine the difference of pressure between the two sections, if the pipe is uniformly tapering and the velocity of water at the smaller section is 1 m/s.	4	CO2	К3
(b)	The time period (t) of a pendulum depends upon the length (L) of the pendulum and acceleration due to gravity (g). Derive an expression for the time period using Rayleigh's method.	4	CO4	К3
	OR			140 40
4(a)	Obtain Bernoulli's equation from Euler's equation of motion.	4	CO2	К3
(b)	Explain dimensional homogeneity with two examples.	4	CO4	К3

Name & Signature of Course In charge Name & Signature of Module Coordinator

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 SECOND SESSIONAL TEST 2022 - 23 (EVEN SEMESTER)

SCHEME AND SOLUTION (SET B)

Degree

B.E

Semester: IV

Branch-Stream : ME-ME

Course Type / Code: Integrated/21ME43

Course Title

: Fluid Mechanics

Max Marks: 20

Q. No	SOLUTION	MARKS
	PART-A	
l(a)	Derivation of Chezy's equation (V= C √mi)	04
1(b)	$Q=A_1V_1=A_2V_2$	
	$V_1 = 2.25 V_2 = 3.492 \text{ m/sec} 01$	
	h_i = 0.3107 m, h_{fl} = 3.9774 m, he=0.1918 m, h_{f2} = 1.3968 m ho=0.1228 m 05	08
to "	$V_2 = 1.552 \text{ m/sec} 01$	
186	$Q = 0.0617 \text{ m}^3/\text{sec} 01$	
2 (a)		
	1 2	
	$\bigcap_{P} F \longleftarrow \bigcap_{P} $	08
	$\rightarrow \downarrow \qquad $	
	1 - 1 - 2	
	1 L 2	
	Fig: uniform horizontal pipe with a steady flow of fluid	
	Sketch-02	
201	$h_f = 4f I V^2 / 2gd$ Derivation- 06	
2(b)	$V_1 = 6 \text{ m/s} - 01$	
	h_i = 0.9174 m, h_{fl} = 7.6330 m, he=1.0321 m, h_{f2} = 1.3417 m - 02	
	H= 11.0388 m 01	
	PART-B	04
3 (a)	$A_1 = 5.026 \times 10^{-3} \text{ m}^2$	
- (-)	$A_2=0.045 \text{ m}^2$	
	$V_2 = 0.11 \text{ m/sec} 01$	
	$Z_2=5\sin 15^0=1.294 \text{ m}$ 01	
	$P_1-P_2= 12209.69 \text{ N/m}^2 \text{ or } 12.20 \text{ KN/m}^2 02$. 04

3(b)	t= K L ^a g ^b 01 T= K [L] ^a [LT ⁻²] ^b 01 a= 1/2, b= -1/2 01 $0 = K L^{1/2} g^{-1/2} 01$	04
4(a)	dp/p+gdz+vdv=0 Euler's equation01 $p/\rho g+v^2/2g+Z=Constant$ Bernoulli's equation03	04
4(b)	h_f = 4flV²/2gd [L]=[L] LHS=RHS $\mathbb I$ Equation is dimensionally homogeneous. $P = \gamma QH$ [ML²T³]=[ML²T³] LHS=RHS $\mathbb I$ Equation is dimensionally homogeneous.	02+02= 04

Signature of Course In-charge

Module In-charge

Bangalore – 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Fluid Mechanics
Course Code	21ME43
Course Incharge	Dr. Saleem Khan
Academic year	2022-2023
Semester	IV
CIE#	IA - 3
Set	AM B□
	crutiny parameters
Whether questions are	Yes ✓ No□; If No, Suggestions:
according to assessment plan?	Yes M NoLl, II No, Suggestions
Whether questions prepared are	Yes ☑ No □; If No, Suggestions:
within the covered syllabus?	/
Whether all questions are mapped to CO/PO properly?	Yes ☑ No □; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No □; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes ☑ No ☐; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes ☑ No ☐; If No, Suggestions:
Difficulty level	Very High □ High □ Moderate ☑ Low□
Percentage of Similarity	20%
uestions in Set A & B	
Final decision	Accepted without corrections ✓
	Accepted with minor corrections□
	Not accepted□

Signature with date of CIE Question paper setter

Name and Signature with date of CIE Question paper Scrutiniser

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 THIRD INTERNAL TEST QUESTION PAPER 2022-23 EVEN SEMESTER

SET: A

Degree

B.E

Branch - Stream:

ME-ME

Course Title:

Fluid Mechanics

Duration: 60 Minutes

USN

Semester: IV

Course Type / Code: Integrated/21ME43

Date: 07/09/2023

Max Marks: 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

K-Levels. K1-Keinebernig, K2-Understanding, K3-Apprynig, K4-Anaryzing, K3-Evaluating, K0-Creating				
Q No.	Questions	Marks	СО	K- Level
	PART-A			
1(a)	Derive an expression for velocity of sound wave in a fluid.	8	CO5	К3
(b)	A projectile travels in air of pressure 8.829 N/cm ² at -10°C at a speed of 1200 km/hr. Find the Mach number and Mach angle. Take k=1.4 and R=287 j/kg K.	4	CO5	КЗ
	OR			
2(a)	What do you understand by stagnation pressure? Obtain an expression for stagnation pressure of a compressible fluid in terms of approaching Mach number and pressure.	8	CO5	К3
(b)	Find the velocity of air flowing at the outlet of a nozzle, fitted to a large vessel which contains air at a pressure of 294.3 N/cm ² (abs) and at a temperature of 30°C. The pressure at the outlet of the nozzle is 137.34 N/cm ² (abs). Take k=1.4 and R=287 j/kg K.	4	CO5	К3
PART -B				
3(a)	Using Buckingham's π -theorem, show that the velocity through a circular orifice is given by $V = \sqrt{2gH} \emptyset \left[\frac{D}{H}, \frac{\mu}{\rho VH} \right]$. Where H is the head causing flow, D is the diameter of the orifice, μ is the co-efficient of viscosity, ρ is the mass density and g is the acceleration due to gravity.	8	CO4	К3
OR				
4(a)	Explain the different types of hydraulic similarities that must exist between a prototype and its model.	4	CO4	К3
(b)	Define the following non-dimensional numbers: (i) Reynold's number and (ii) Mach's number. What are their significances for fluid flow problems?	4	CO4	К3

Name & Signature of Course In charge

Name & Signature of

Module Coordinator

HOD

Principal

Selected

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 THIRD SESSIONAL TEST 2022 - 23 (EVEN SEMESTER)

SCHEME AND SOLUTION (SET A)

Degree

B.E

Branch-Stream : ME-ME

Semester: IV

Course Type / Code: Integrated/21ME43

Max Marks: 20

: Fluid Mechanics Course Title

Q. No	SOLUTION	MARKS
1()	<u>PART-A</u>	
1(a)	Piston Rigid pipe	
•	$\frac{\lambda = vdt}{L = cdt}$ wave front	02
	Max of fluid before = Mass of fluid after. Compression Compression	
	SACdt = (S+dS)Ax (cdt-Vdt) -by Adt	02
	SC = (S+dS)(C-V) On Simplification CdS = SV + VdS dS is very Small, - neglected, CdS = SV - A From momentum equation (P+dP)A - P x A = SAL (V-0) = SACdt(V-0) = SACV	02
	$dPA = SACV : C = \frac{dt}{SV} - B$ $\times^{1}Y O SB C^{2}dS = SV \frac{dP}{SV}, C = \sqrt{dP}_{AS}$	02

		- 1-07
1(b)	P=8.829 N/cm2 = 8.829 X104 N/m2	
	$T = -10^{\circ}C = -10 + 273 = 263 \text{ k}$	01
_	V= 1200 Km/hy = 1200 x 1000 = 333.34 m/s	
	K = I \ 4	
	R=287 J kg'k C= KRT = 1.4x287x263 = 325.07 m/s	01
	$M = \frac{V}{C} = \frac{333.34}{325.07} = 1.02$	01
	$Sin \propto = \frac{C}{V} = \frac{1}{M} = \frac{1}{1.02} = 0.98$	
	∝=Sin'(0.98)=78.52°	01
2 (a)	Body (17 72 + V2 17	
	$ \begin{bmatrix} \frac{k}{k-1} \end{bmatrix} \frac{\rho_1}{s_1 s_2} + \frac{V_1^2}{s_2 s_3} + Z_1 = \begin{bmatrix} \frac{k}{k-1} \end{bmatrix} \frac{\rho_2}{s_2 s_3} + \frac{V_2^2}{2g} + Z_2 $ $ Z_1 = Z_2, \rho_2 = \rho_5, \rho_3 = \rho_5 $	
	Z ₁ =Z ₂ , P ₂ =P ₅ , S ₂ =S ₅	
	$\begin{bmatrix} k \\ k-1 \end{bmatrix} P_1 \left[1 - \frac{P_2}{P_1} \times \frac{S_1}{S_2}\right] = -\frac{V_1^2}{2}$	
1	For Adiabatic process	
	$\frac{P_1}{S_1^K} = \frac{P_2}{S_2^K} = \frac{P_S}{S_S^K}$	
	$\frac{g_1}{g_0} = \left[\frac{p_1}{p_S}\right]^{k}$	
	$\left[\frac{k}{k-1}\right] \frac{P_1}{g_1} \left[1 - \frac{P_S}{P_1} \times \left(\frac{P_1}{P_S}\right)^{1/k}\right] = -\frac{V_1^2}{2}$	04
	on Complification	04
	$1 + \frac{V_1^2}{2} \left[\frac{k-1}{k} \right] \frac{S_1}{P_1} = \left[\frac{P_S}{P_1} \right]^{\frac{K-1}{K}}$	
	For adiabatic process, velocity of Sound is	
	$C = \sqrt{kRT} = \sqrt{\frac{P_1}{3}}$, $C_1 = \sqrt{\frac{P_1}{3}}$ or $C_1^2 = K \frac{P_1}{3}$	
計	$1 + \frac{V_1^2}{2} (K-1) \times \frac{1}{C_1^2} = \left[\frac{P_S}{P_1} \right]^{\frac{K-1}{K}}$	
	$1+\frac{M_1^2}{2}(K-1)=\left[\frac{P_S}{P_1}\right]^{\frac{K-1}{K}}$	
7:	$\therefore P_{S} = P_{1} \left[1 + \frac{K-1}{2} M_{1}^{2} \right]^{\frac{K}{K-1}}$	04
	••	

. .

2(b)	P1 = 294.3 N/cm2 = 294.3×104 N/m2	Al-Person
10 to	T ₁ = 30+273 = 303 k	
	P2 = 137.34 N/cm2 = 137.34 X104 N/m2	
	R=287 J/kgk	02
	$k = 1.4$ $\frac{P_1}{S_1} = RT_1$, $S_1 = \frac{P_1}{RT_1} = \frac{294.3 \times 10^4}{287 \times 303} = 33.84 \text{ kg/m}^3$	02
s 1-	$V_{2} = \sqrt{\frac{2k}{k-1}} \frac{P_{1}}{g_{1}} \left[1 - \left(\frac{P_{2}}{P_{1}} \right)^{\frac{k-1}{k}} = \sqrt{\frac{2X_{1} \cdot 4}{14-1}} \frac{294 \cdot 3X_{10}^{4}}{33 \cdot 84} \left[1 - \left(\frac{137 \cdot 34X_{10}^{4}}{294 \cdot 3X_{10}^{4}} \right)^{\frac{1\cdot 4-1}{1\cdot 4}} \right]$	
	V2 = 344.54 m/sec	02
	PART-B	
3 (a)	V=f(H,D,U,S,g)	
3-	f(V,H,D,U,8,9)=0	
,	n=6, m=3, (n-m)=6-3=3π's	
	$f_1(\pi_1,\pi_2,\pi_3)=0$	
	TI = Haigh gol y	02
3.0	$\pi_2 = H^{a_2} g^{b_2} g^{c_2} D$	V 2
17	1 x3 = H ³ g ³ g ^{c3} μ	· 1
	For first x-term: a==== , b==== , C=0, : x==H== g== go	02
	$ \pi_1 = \frac{V}{H^{1/2}g^{1/2}} \Rightarrow \boxed{\pi_1 = \frac{V}{\sqrt{9H}}} $	
	For Second x-term: $a_2 = -1$, $b_2 = 0$, $c_2 = 0$, $h_2 = H^{-1}g^0 \cdot g^0 \cdot D$	
.!	$\overline{N_2} = \frac{D}{H}$	00
	For Third 7-term: a3 = -3, b3 = -1, C3=-1, T3=H3/2 9/2 9'4	02
,	0 Complete 1 2 , 03 = 1 , 13 = H 2929. W	
	on Simplification, $\pi_3 = \frac{U}{8VH}$	
	f, (\frac{1}{19H}, \frac{1}{14}, \frac{1}{12VH}) = 0	
		03
	V = Ø[H, WH] OT V = 129H Ø[H, WH]	02
	117 117 117 117 117 117 117 117 117 117	
4(a)	✓ Geometric Similarity ✓ Kinematic Similarity	
` '		

4(b)	i) Reynold's Number is defined as the ratio of inertia	147
	force of a flowing fluid and the viscous force of the fluid	
	Ke = 3Va	
2 1	Significance: The Reynold's number is used to study fluids as they flow. The Reynold's number determines whether a fluid flow is Laminar as turbulent.	
	fluids as they flow. The Reynold's number the	0.4
	whether a fluid grow is survived to the	04
,	ni)Mach Number is defined as the square root of the	
	ratio of the inertia force to elastic force. $M = \frac{V}{C}$	
	Significance: The Mach number provides a Comparison	
	between fluid flow rate and the speed of Sound	

Signature of Course In-charge

Module In-charge

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Fluid Mechanics
Course Code	21ME43
Course Incharge	Dr. Saleem Khan
Academic year	2022-2023
Semester	IV
CIE#	IA - 3
Set	AD BE
	rutiny parameters
Whether questions are according to assessment plan?	Yes No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes □ No □; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ☑ No ☐ ; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No ☐ ; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes ☑ No □; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes ☑ No ☐ ; If No, Suggestions:
Difficulty level	Very High □ High □ Moderate ☑ Low□
Percentage of Similarity questions in Set A & B	20%
Final decision	Accepted without corrections ☑
	Accepted with minor corrections□
	Not accepted□

Signature with date 2 of CIE Question paper setter

Name and Signature with date of CIE Question paper Scrutiniser

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 THIRD INTERNAL TEST QUESTION PAPER 2022-23 EVEN SEMESTER

SET: B

Degree : B.E

Branch - Stream : ME-ME

Course Title:
Duration:

60 Minutes

Fluid Mechanics

USN

Semester: IV

Course Type / Code: Integrated/21ME43

Date: 07/09/2023

Max Marks: 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	СО	K- Level	
	PART-A				
1(a)	Obtain an expression for stagnation pressure of a compressible fluid in terms of approaching Mach number and pressure.	8	CO5	К3	
(b)	Find the Mach number when an aeroplane is flying at 1000 km/hr through still air having pressure of 7 N/cm ² and temperature of -5°C. Take R= 287.14 j/kg K. Calculate the pressure and temperature of air at stagnation point. Take k=1.4.	4	CO5	К3	
	OR				
2(a)	Derive an expression for velocity of sound wave in a fluid.	8	CO5	К3	
(b)	Define Computational fluid dynamics (CFD). Mention the applications and limitations of CFD.	.4	CO5	К3	
	PART –B	,			
3(a)	Using Buckingham's π -theorem, show that the discharge Q consumed by an oil ring is given by $Q = Nd^3 \emptyset \left[\frac{\mu}{\rho Nd^2}, \frac{\sigma}{\rho N^2 d^3}, \frac{w}{\rho N^2 d} \right]$ Where d is the internal diameter of the ring, N is the rotational speed, ρ is density, μ is viscosity, σ is surface tension and w is the specific weight of oil.	8	CO4	К3	
	OR				
4(a)	What are repeating variables? How are the repeating variables selected for dimensional analysis	4	CO4	К3	
(b)	A 7.2 m height and 15 m long spillway discharges 94 m ³ /s discharge under a head of 2 m. If a 1:9 scale model of this spillway is to be constructed, determine model dimensions, head over spillway model and the model discharge. If model experiences a force of 7500 N, determine force on the prototype.	4	CO4	К3	

Name & Signature of Course In charge

Name & Signature of

Module Coordinator

HOD

Principal

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 THIRD SESSIONAL TEST 2022 - 23(EVEN SEMESTER)

SCHEME AND SOLUTION (SET B)

Degree : B.E

Branch-Stream: ME-ME

Course Title : Fluid Mechanics

Semester: IV

Course Type / Code: Integrated/21ME43

Max Marks: 20

Q. No	SOLUTION	MARKS
	PART-A	
l(a)	Body	
	$ \frac{\left[\frac{k}{k-1}\right]\frac{P_1}{S_1g} + \frac{V_1^2}{2g} + Z_1 = \left[\frac{k}{k-1}\right]\frac{P_2}{S_2g} + \frac{V_2^2}{2g} + Z_2 }{Z_1 = Z_2, P_2 = P_S, S_2 = S_S } $	
	$\begin{bmatrix} k \\ k-1 \end{bmatrix} \begin{bmatrix} P_1 \\ S_1 \end{bmatrix} \begin{bmatrix} 1 - \frac{P_S}{S} \times \frac{S_1}{S} \end{bmatrix} = -\frac{V_1^2}{2}$	
	For Adiabatic process	02
	$\frac{P_1}{S_1^K} = \frac{P_2}{S_2^K} = \frac{P_S}{S_S^K}$	
	$\frac{g_1}{g_s} = \left[\frac{P_1}{P_s}\right]^{k}$	
	$\left[\frac{k}{k-1}\right] \frac{P_1}{g_1} \left[1 - \frac{P_S}{P_1} \times \left(\frac{P_1}{P_S}\right)^{T_K}\right] = -\frac{V_1^2}{2}$	
	on Simplification $1 + \frac{V_1^2}{2} \left[\frac{k-1}{k} \right] \frac{S_1}{P_1} = \left[\frac{P_S}{P_1} \right]^{\frac{k-1}{k}}$	02
	For adiabatic process, velocity of Sound is	
	$C = \sqrt{kRT} = \sqrt{\frac{P_1}{3}}$, $C_1 = \sqrt{\frac{P_1}{3}}$ or $C_1^2 = K \frac{P_1}{3}$	02
	$1 + \frac{V_1^2}{2} (k-1) \times \frac{1}{C_1^2} = \left[\frac{\rho_s}{P_1} \right]^{\frac{k-1}{k}}$	
	$1 + \frac{M_{1}^{2}}{2}(K-1) = \left[\frac{P_{S}}{P_{1}}\right]^{\frac{K-1}{K}}$ $P_{S} = P_{1}\left[1 + \frac{K-1}{2}M_{1}^{2}\right]^{\frac{K-1}{K-1}}$	02

1(b)	V=1000X1000/60X60= 277.78 m/s	A1 A1 + 1
	$C = \sqrt{KRT} = \sqrt{1.4X287.14X268} = 328.2 \text{ m/s}$	01
	$M_1=V_1/C_1=277.78/328.2=0.846$ $P_2=11.18V_10^4 N/m^2$	01
	Ps=11.18X10 ⁴ N/m ² Ts=306.36 ⁰ K	01
	1S=300.30°K	01
2 (a)		
	Piston Rigid pipe	
·	$\frac{2=\text{volt}}{L=\text{cdt}}$ Wave front	02
	Make of fluid before = Mass of fluid after compression	
	$3ACdt = (8+d8)A\times(cdt-vat)$ 4by Adt 4c = (8+d8)(c-v)	02
1	on Simplification Cds = 3V + Vds ds is very Small, - neglected, Cds = SV - B From momentum equation	
	$(P+dP)A - P \times A = \frac{SAL}{dt}(V-0) = \frac{SACd^{t}}{dt}(V-0) = SACV$ $dPA = SACV : C = \frac{dP}{eV} - B$	02
	x14080 c298=30 dp , C= \approx \approx \approx \cdot \approx \cdot \approx \cdot \approx \cdot \approx \approx \cdot \approx \	02
2(b)	Computational fluid dynamics (CFD) is a science that, with the help of digital computers, produces quantitative predictions of fluid-flow phenomena based on the conservation laws (conservation of mass, momentum, and energy) governing fluid motion.	01
	Applications of CFD Engineering in Different Fields Turbomachinery, Electronics Cooling Simulation, Heat Transfer and Thermal Management, Rotating Machinery Simulation, CFD Analysis for Cavitation, CFD Simulation in Aerodynamics, CFD Simulation for Batteries.	
	Limitations of CFD Cost of tool or software is very high Solutions are not reliable Require large number of input data	03

```
PART-B
3 (a)
                    Solution. Given:
                                                                   Q = f(d, N, \rho, \mu, \sigma, w) or f_1(Q, d, N, \rho, \mu, \sigma, w) = 0
                     \therefore Total number of variables, n=7
                    Dimensions of each variables are
                                                                   Q = L^3 T^{-1}, d = L, N = T^{-1}, \rho = M L^{-3}, \mu = M L^{-1} T^{-1}, \sigma = M T^{-2}

w = M L^{-2} T^{-2}
                           Total number of fundamental dimensions, m = 3
                           Total number of \pi-terms = n - m = 7 - 3 = 4
                           Equation (i) becomes as f_1(\pi_1, \pi_2, \pi_3, \pi_4) = 0
                    Choosing d, N, \rho as repeating variables, the \pi-terms are
                                                                   \pi_1 = d^{a_1} \cdot N^{b_1} \cdot \rho^{c_1} \cdot Q
                                                                   \pi_2 = d^{a_2} \cdot N^{b_2} \cdot \rho^{c_2} \cdot \widetilde{\mu}
                                                                  \pi_3 = d^{a_3} \cdot N^{b_3} \cdot \rho^{c_3} \cdot \sigma
\pi_4 = d^{a_4} \cdot N^{b_4} \cdot \rho^{c_4} \cdot w
                                                                   \pi_1 = d^{a_1}, N^{b_1}, \rho^{c_1}, Q.
                    First π-term
                    Substituting dimensions on both sides,
                                                          M^0L^0T^0 = L^{a_1} \cdot (T^{-1})^{b_1} \cdot (ML^{-3})^{c_1} \cdot L^3T^{-1}
                    Equating the powers of M, L, T on both sides,
                                                                   0 = c_1, 	 c_1 = 0 

0 = a_1 - 3c_1 + 3, 	 a_1 = 3c_1 - 3 = 0 - 3 = -3 

0 = -b_1 - 1, 	 b_1 = -1
                    Power of M,
                    Power of L,
                    Power of T.
                    Substituting a_1, b_1, c_1 in \pi_1, \pi_1 = d^{-3}, N^{-1}, \rho^0, Q = \frac{Q}{d^3 M}
                                                                                                                                                                                     02
                                                                   \pi_2 = d^{\alpha_2} \cdot N^{b_2} \cdot \rho^{c_2} \cdot \mu
                       Substituting the dimensions on both sides, M^0L^0T^0=L^{a_2}\cdot (T^{-1})^{b_2}\cdot (ML^{-3})^{c_2}\cdot ML^{-1}\cdot T^{-1}
                       Equating the powers of M, L, T on both sides,
                       Power of M,
                                                                    0 = c_2 + 1,
                                                                                                          c_2 = -1
                       Power of L.
                                                                    0 = a_2 - 3c_2 - 1,
                                                                   a_2 = 3c_2 + 1 = -3 + 1 = -2
                                                                    0 = -b_2 - 1,
                                                                                               b_2 = -1
                       Substituting the values of a_2, b_2, c_2 in \pi_2,
                                                                   \pi_2 = d^{-2} \cdot N^{-1} \cdot \rho^{-1} \cdot \mu = \frac{\mu}{d^2 N \rho} \quad \text{or} \quad \frac{\mu}{\rho N d^2}.
                                                                                                                                                                                     02
                                                                   \pi_3 = d^{a_3} \cdot N^{b_3} \cdot \rho^{a_3} \cdot \sigma
                       Third x-term
                       Substituting dimensions on both sides,
                                                           M^{0}L^{0}T^{0} = L^{a_{3}} \cdot (T^{-1})^{b_{3}} \cdot (ML^{-3})^{c_{3}} \cdot MT^{-2}
                       Equating the powers of M, L, T on the sides,
                       Power of M.
                                                                    0 = c_3 + 1,
                                                                                                         a_3 = 3c_3 = -3
b_3 = -2
                       Power of L,
                                                                    0 = a_3 - 3c_3
                                                                                                :.
:.
                                                                    0 = -b_3 - 2.
                       Power of T,
                       Substituting the values of a_3, b_3, c_3 in \pi_3.
                                                                   \pi_3 = d^{-3} \cdot N^{-2} \cdot \rho^{-1} \cdot \sigma = \frac{\sigma}{d^3 N^2 \rho}
                                                                   \pi_4 = d^{a_4}, N^{b_4}, \rho^{c_4}, w
                       Fourth π-term
                       Substituting dimensions on both sides,
                                                                                                                                                                                    02
                                                          M^0L^0T^0 = L^{a_4} \cdot (T^{-1})^{b_4} \cdot (ML^{-3})^{c_4} \cdot ML^{-2}T^{-2}
                       Equating the powers of M, L, T on both sides,
                       Power of M,
                                                                    0 = c_4 + 1,
                                                                                                         a_4 = 3c_4 + 2 = -3 + 2 = -1

b_4 = -2
                                                                    0 = a_4 - 3c_4 - 2, \qquad \vdots
0 = -b_4 - 2, \qquad \vdots
                       Power of L.
                       Power of T.
                       Substituting the values of a_4, b_4 and c_4 in \pi_4,
                                                                   \pi_4 = d^{-1}, N^{-2}, \rho^{-1}, w = \frac{w}{dN^2\rho}
                       Now substituting the values of \pi_1, \pi_2, \pi_3, \pi_4 in (ii),
                                                f\left(\frac{Q}{d^3N}, \frac{\mu}{\rho N d^2}, \frac{\sigma}{d^3N^2\rho}, \frac{w}{dN^2\rho}\right) = 0 \quad \text{or} \quad \frac{Q}{d^3N} = f_1\left[\frac{\mu}{\rho N d^2}, \frac{\sigma}{d^3N^2\rho}, \frac{w}{dN^2\rho}\right]
                                                                                                                                                                                    02
                                                                   Q = d^3N\phi \left[ \frac{\mu}{\rho Nd^2}, \frac{\sigma}{d^3N^3d}, \frac{w}{dN^2\rho} \right]. Ans.
                   or
```

4(n)	 Method of Selecting Repeating Variables. The number of repeating variables are equal to the number of fundamental dimensions of the problem. The choice of repeating variables is governed by the following considerations: As far as possible, the dependent variable should not be selected as repeating variable. The repeating variables should be choosen in such a way that one variable contains geometric property, other variable contains flow property and third variable contains fluid property. Variables with Geometric Property are Length, I dii) d Height, H etc. Variables with flow property are Velocity, V Acceleration etc. Variables with fluid property: (i) μ, (ii) ρ, (iii) to etc. The repeating variables selected should not form a dimensionless group. The repeating variables together must have the same number of fundamental dimensions. No two repeating variables should have the same dimensions. In most of fluid mechanics problems, the choice of repeating variables may be (i) d, v, p (ii) l, v, p or (iii) l, v, p or (iiv) d, v, μ. 	04
4(b)	(i) Model dimensions (h_m and L_m) $\frac{h_P}{h_m} = \frac{L_P}{L_m} = L_r = 9$	
	$\frac{1}{h_m} = \frac{1}{L_m}$	
	$h_m = \frac{h_P}{9} = \frac{7.2}{9} = 0.8 \text{ m. Ans.}$	
	And $L_m = \frac{L_p}{9} = \frac{15}{9} = 1.67 \text{ m. Ans.}$	01
	(ii) Head over model (H _m)	
	$\frac{H_P}{H_m} = L_r = 9$	01
	$H_{m} = \frac{H_{P}}{9} = \frac{2}{9} = 0.222 \text{ m. Ans.}$	
	(iii) Discharge through model (Q _m)	
	Using equation (12.23), we get $\frac{Q_P}{Q_m} = L_r^{2.5}$	
	$Q_{m} = \frac{Q_{P}}{L_{2}^{2.5}} = \frac{94}{9^{2.5}} = \frac{94}{243} = 0.387 \text{ m}^{3}/\text{s. Ans.}$	01
	(iv) Force on the Prototype (F _p)	
	Using equation (12.24), we get $F_r = \frac{F_P}{F_m} = L_r^3$	
	$F_P = F_m \times L_r^3 = 7500 \times 9^3 = 5467500 \text{ N. Ans.}$	01

Signature of Course in-charge

Module In-charge

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Design of Machine Elements-I
Course Code	18ME52
Course Incharge	Anilkumar A
Academic year	2022-2023
Semester	V
CIE	1st
Set	A☑ B□
Sc	erutiny parameters
Whether questions are according to assessment plan?	Yes ☑ No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes ☑ No □; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ₽ No □; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No □; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes ☑ No □; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes ☑ No ☐; If No, Suggestions:
Difficulty level	Very High □ High ☑ Moderate □ Low□
Percentage of Similarity questions in Set A & B	307.
Final decision	Accepted without corrections
	Accepted with minor corrections□
v.	-
	Not accepted□

Signature with date of CIE Question paper setter

H. Nachderk C19. NAGARMINATO OU/11/2022

Name and Signature with date of CIE Question paper Scrutiniser

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 FIRST INTERNAL TEST QUESTION PAPER 2022-23 ODD SEMESTER

SET: A

Degree : B.E

Branch : MECHANICAL ENGINEERING

Course Title: DESIGN OF MACHINE ELEMENTS-1

Duration: 90 Minutes

USN

Semester: V Course Code: 18ME52

Date: 14-11-2022

Max Marks: 30

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	СО	K-
	PART-A			Lev
1(a)	Briefly Explain the phases of Engineering Design.	6	COI	K2
(b)	A shaft of 50mm diameter is subjected to a tensile load of 10KN, bending load of 3KN & a torque of 3KN-m as shown in figure, determine the stresses at points A & B.	6	COI	КЗ
	A point in a structural member is subjected to plane stress as shown in figure. Determine the following. (i) Normal and Tangential Stress on a plane inclined at 45° with respect to vertical. (ii) The principal stresses. (iii) The orientation of principal stresses. (iv) The maximum shear stress and its direction.			
(c) ,	304pa - 294pa - 404pa	6	COI	К3
	29-pa 30-pa OR	(02)2 C		
a) Si	ate and explain the following theories of failures		** 1 /	1 110
	(a) Rankin's Theory, (b) Tresca's Theory, (c) Distortion Energy Theory	6	CO1	K2

	Determine the thickness of a flat plate loaded as shown in figure. Limiting the		PRODUCTION OF THE PROPERTY OF	Discount of the Control of the Contr
(b)	maximum stress induced in the material to 80 Mpa.		and	
	20KN = 2 A B r=5mm	6	C01	K3
	A 50mm diameter steel rod supports a 9KN load & in addition is subjected to a		700	
	Torsional moment of 100N-m as shown in figure. Determine the maximum tensile & maximum sear stress.		Part of the Part o	p
	considered maximum sear success.		Part of the last o	
	anagamananananananananananananananananan		50	
	50			
(c)	100N-m	6	C01	КЗ
			AMAND R INC.	2
	 ~ 		Delication of the second	E31
	9KN			Telephone In the International Property of the International Prope
	PART-B			
	Show that the maximum stress induced in axial impact loading is given by			
3(a)	$\sigma' = \sigma \left[1 + \sqrt{1 + \frac{2h}{\delta_{st}}} \right]$	6	C02	КЗ
	An unknown weight falls through 100mm on a collar rigidly attached to the		45 10 10	
(b)	lower end of a vertical bar of 3m long and 600mm ² cross section. The			
(0)	maximum instantaneous extension is 2mm. Determine the corresponding	•	C02	K3
	Stress and value of unknown weight. Take E=206Gpa.			
	OR OR			
	A weight of 1.5KN is dropped on to a collar at the lower end of the vertical bar			
4(2)	of length 3m and a diameter 25mm. Calculate the height of drop, if the	6	C02	· K3
	maximum stress induced is not to exceed 120Mpa, take E=210Gpa.			
(b)	A weight of 1KN is dropped from a height of 50mm at the free end of a			
	cantilever beam of effective length 300mm. Determine the square cross	6	CO2	КЗ
	section of the cantilever beam. I f the allowable stress for the material is 80Mpa.			\$ 14. ·
-	Sovieta.			

(ANTERUMAR.)
Name & Signature of Course In charge:

CM NECT BURGARY
Name & Signature of
Module Coordinator:

HODIE 4/11/22 Printipal

Sulted

K S INSTITUTE OF TECHNOLOGY, BENGALURU-560109

DEPARTMENT OF MECHANICAL ENGINEERING I Internal Assessment test ODD Semester **SCHEME OF VALUATION 2022-23**

Course Title: Design of Machine Elements - I

Course Code: 18ME52 Date: 14/11/2022

Q. No.	Solution	Marks Division	Total Marks
(10)	Symphosois -> Analysis & opinion at Problem ->	-00-	-06 -
1.7	Explanation	- 60-	
(10)	Delegion Political	-03-	
	8 pour 34 good 2= 12.22 4/2011	11 .1	-06-
7 (1)	Stresses at Point A! . Trace = 104.3N 1mm2; 7=0867	- 63	
	81800000 at Points! France = 1.584 mm2; Chaux = 474044 Wormal & Turyondial 818000 -> To = 304/mm², To=354/m	1.5	
(10)	mount & Turyproted 878008 -7 00 17 = -38.31 Mpg.	1.1.5-	-06-
	Dimpino Strong -> 11=48 1124	x" -	=
	orientation of Storbo-> $O_1=17.767'$; $O_2=107.76'$ Maximum shows Storbo-> $Z_{max}=43.01$ Mpc, $O=27.03'$	-1.5-	1
		- 2 -	
(20)	Ramitions Theory & Defination — >	- 2 -	-06-
	Distortion Theory & Defination.	-2-	
(DP)	Considering Section A-A Thickness h= 13.02mm	- 3-	-06-
	Corroldoning Section 3. B Thickness h= 11. 901mm	-3-	
(24)	Moscirmon Tensoile States		
	Virux= () + \ () 2+ 22 = 25.794 N mm2	- 03 -	-06-
	Massimum Sheet Streets!		
	Zmox = \(\left(\frac{T}{\delta}\right)^2 + \(\tau^2 \) = 13\delta N/mm^2	-63-	
	- Land J. C		1/2/4

(30) Develuing			4
	1 - LIN 2-13 (NF) - Q1 (NF) - MP=0	-03-	
1 1	HACAS; Q, = A & 1 + 1 + 5p & 3 ->	~ 69 ~	-06-
(36) Involvente	FIDELIE BY SCASS Q = E'E = 131.34 MINING	-02-	-4-
4,= 4	614 114 25 7	-04-	-06-
	10 1 10 1 10 10 10 10 10 10 10 10 10 10	the same state.	(84)
(40) T= F	- = 3.00 N/mm?; Sol = WI = 00465mm	-63-	06.
4,= 4	- {1+ \(\frac{1}{1+\frac{2h}{2h}}\) \(\frac{2}{6+\frac{1}{3}}\) = \(\hat{h} = \(\frac{3h}{2}\) \(\frac{6h}{2}\) \(\hat{mm}\)	-03 -	J. Mr.
(46) Th=	$\frac{T}{HbH} = \frac{1.8 \times 10^{b}}{1.8 \times 10^{b}}$	and!	
17 47	1 514.985×103 514.985×103	-03-	-06-
7= -	至 <u>唐下</u> — <u>Pl4.90</u>	1	
and f	b=h=313.2mm	-03-	V 54
y = = = = =	b= h 17 10 10 10 10 10 10 10 10 10 10 10 10 10	1. 1.715 71	1
7	7+40/ +580, FORE/ 113-4-7025-23.	Topo a	
	with a filling enough to state the	to hop in	17 miles
13	mineral of the real	er fu	4.16
	Tilaifi 11 Mart	take o	
	so itsilfed in proceed a	Est Estate	7
n - 70	concret of southful to former	400 m. 15 m.	, t-
- 1	monogeth of Germant - I Jerucia	dir Ville	**
-,-1			54
		Agures	1-1
	of antiques a sufficient	4	
	EAR (2007) 10		ist.
	inaction and the state of the		
114 65.			

COURSE INCHARGE

MODULE CO ORDINATOR

GIGNATURE OF HOD

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Design of Machine Elements-I
Course Code	18ME52
Course Incharge	Anilkumar A
Academic year	2022-2023
Semester	V
CIE	1st
Set	A□ B 🗹
Sc	rutiny parameters
Whether questions are according to assessment plan?	Yes ☑ No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes ☑ No □; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ☑ No ☐; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No □; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes ☑ No ☐; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes ☑ No □; If No, Suggestions:
Difficulty level	Very High ☐ High ☐ Moderate ☐ Low☐
Percentage of Similarity questions in Set A & B	304.
Final decision	Accepted without corrections
	Accepted with minor corrections□
4. A	Not accepted□

Signature with date of CIE Question paper setter

CM-NAGABININAM MUILL

Name and Signature with date of CIE Question paper Scrutiniser

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 FIRST INTERNAL TEST QUESTION PAPER 2022-23 ODD SEMESTER

SETLE

diam'r.

Degree : R.E.

MECHANICAL ENGINEERING

Course Vide: DESIGN OF MACHINE ELEMENTS-I

Duration : 90 Minutes

USN

Semester: V

Course Code: 18ME52 Date: 14-11-2022

Max Marks: 30

Note: Answer ONE full question from each part.

K-Level: K1-Remedering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Ø.W.	Questions	Marks	со	K- Level
	PART-A			1
3(2)	Explain the codes and standards used in machine design.	6	CO1	K2
	A shaft of Simm diameter is subjected to a tensile load of 10KN, bending load of SKN & a torque of 3KN-m as shown in figure, determine the stresses at points A & B.			
(D)	Somit NOKN	6	CO1	КЗ
i.,	-335	净	,	
(9)	A beam of uniform rectangular cross section is fixed at one end and carries a load of 1000N at a distance of 300mm from the fixed end. The maximum bending stress in the beam is \$0MPa. Find the width and depth of the beam. If the depth is twice that of width.	6	CO1	кз
	OR			
2(1)	Explain the factors which influence the selection of engineering materials.	6	CO1	K2
	A point in a structural member is subjected to plane stress as shown in figure. Determine the following. (i) Normal and Tangential Stress on a plane inclined at 45° with	for one		
(2)	respect to vertical. (ii) The principal stresses. (iii) The orientation of principal stresses.	6	CO1	кз
	(iv) The maximum shear stress and its direction.		- BAT	18 Lazer, .

			1	
,	30Mpa 29Mpa 29Mpa 29Mpa 30Mpa		F. 1	
	A wall bracket with a rectangular cross section is as shown in figure. The force 'P' acting on the bracket at 60° to the vertical is 5 kN. The material of the bracket is grey cast iron and FOS is 2. Determine the cross section of the bracket for maximum normal stress.		7 - 2	
(c)	b=3t 5KN	6	COI	К3
	200mm			7.
	PART -B		77.	at year
3(a)	A machine element in the form of a cantilever beam of 800mm span has a rectangular cross section of depth 200mm. The free end of a beam is subjected to an impact from a transverse load of 1KN, that drops on to it from a height of 40mm. Selecting carbon-steel C-30, with yield strength of 294.2Mpa and factor of safety as 2.5. Determine the width of rectangular cross section.	6	CO2	КЗ
(b)	A steel bar of 50mm diameter and 1m long is subjected to an axial impact load caused by weight of 200N under gravity, with a velocity of 5m/sec. Determine maximum stress induced in the bar. Take E=210 X 10 ³ N /mm ²	6	CO2	кз
	OR			
4(a)	Obtain an expression for impact stress induced in a member subjected to an axial load.	6	CO2	КЗ
(p) ,	An unknown weight falls through 100mm on a collar rigidly attached to the lower end of a vertical bar of 3m long and 600mm ² cross section. The maximum instantaneous extension is 2mm. Determine the corresponding Stress and value of unknown weight. Take E=206Gpa.	6	CO2	кз

A CHITTE COOL (Amilhumai. A)
Name & Signature of

Course In charge:

Mame & Signature of Module Coordinator:

K S INSTITUTE OF TECHNOLOGY, BENGALURU-560109 DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING I Internal Assessment test ODD Semester SCHEME OF VALUATION 2022-23

Course Title: Design of Machine Elements - I

Course Code: 18ME52

Date: 14/11/2022

Q. No.	Solution was a second	Marks Division	Total Marks
(1a) (fg)	Defin of Goders with Examples	-03-	-06-
(11)	Tenraile Gracab' 07 = 15.09 Mpa.	inthe sin	. J. D. J.
-1	Bending_5+8680! TO= 97.78 N/mm2 6	-03-	
	845000; Stacoof; S= 18.9 11/11/105.	. I. china	-06-
	assert & Times = 106.8 Hpc. Tmax = 528Hpq	101112	Z .
	Shoot at B: Than = 1:58 HPa; Zmax = 47.98 HPa	-03-	p (d)
(10)	$M_b = FxL = 3x10^5 N - mm; I = Dh^3 = 8b^4 - >$	- 83-	-06-
	4=hb. b= 17.784mm. [h= 35.586mm]	-03-	
(ab)	NEOTHALL & TURGETHIAL STORES TO = 30M Pa; TO = 35MPA -	1.5 -	
	TE Principal Streets Ti=48.01MPa; To=-38.31MPa	1-5-	-06-
	orientation of Poincipal Stocks O1=1767; O0=107.76	-1-5-	
	6 man 8+2030 & Doikerhon. Thoux=43.011 MP9;	-05.5-	
· /	Herital Component $F_H = 4380.187N$ \longrightarrow	-02-	
	Direct 6+2000 Fd = 1444.37	09-	-06-
- 1	Bending stress Tb = 519615.04		
	44(02-	
	02 01		
(ps	Strength; Rigidity; wear Resolutance;		
	William Sem Officiation & a seminary of the	06-	-06-
	Reliability; Cost; Mairocain ability;	8	
	manufacturability	FE Z	1/2

(30)	$A_1 = 114.4 \text{ Mbd}$, $A = \frac{9EI}{2} = \frac{9.916}{1.916}$	-63-	-06-
	1 = 1 & 1+ 1+ 8p 3 = p = Edichum	-03-	Co
(3P)		07 -	
	St = Mr - 4.85x 10 mm.		-06-
- 77	TI = T & 1 + VI + 2h & = 229.77N mm2	-03-	414
(401)	Deciving HIM: T'2 (AL)-T'(WL)-Wh=0	-03-	-06-
		-031-111-	0.5
	Deciving till! T'= V 11+ 3h &	F. 11. 1581	7
(46)	V = 01 = 101	100	-06-
7.73	$\nabla' = \nabla \left\{ 1 + \sqrt{1 + \frac{\partial h}{\partial s}} \right\}.$	-04-	3.7
	W= 807.03N		
	et mmeet saa partiet are state to impressed	r in Francis	L N
	19 1 STATE OF THE	egliteg	
	THE SECTION OF THE SE	State man	
1 4 =	23 /2 : 2 [4 /2 25 / = Ht star star	l later an i	11 As
-10	The state of the s	25 Corstin	11
	PE SIMPLY SATE OF	regarder et en regarder	
	The same of a comment	14	,
201 201			
	Y topo a replication of the second	his harry or t	<i>Q</i> 3
Int	Militar convenient (42-1)	MENTAL V	A. Carrier

CHARLE LINE TENTE

COURSE INCHARGE

MODULE CO ORDINATOR

SIGNATURE OF HOD

Bangalore – 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Design of Machine Elements-I
17ME54
Anilkumar A
2022-2023
V
2 nd
AU B 🗆
crutiny parameters
Yes ☑ No□; If No, Suggestions:
Yes ♥ No □; If No, Suggestions:
Yes ☑ No ☐; If No, Suggestions:
Yes ☑ No ☐; If No, Suggestions:
Yes ☑ No ☐; If No, Suggestions:
Yes ☑ No ☐; If No, Suggestions:
Very High ☐ High ☑ Moderate ☐ Low☐
12-1.
Accepted without corrections
Accepted with minor corrections□
Not accepted□

Signature with date of CIE Question paper setter (MINACANIW MM)

Name and Signature with date of CIE Question paper Scrutiniser

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 SECOND INTERNAL TEST QUESTION PAPER 2022-23 ODD SEMESTER

SET: A	4 - 2 - 1 - 1	USN			Γ			
				 		 	 	-
		~			¥ 7			

Degree : B. E., Semester : V

Branch : Mechanical Engineering Course Code : 18ME52 Course Title : Design of Machine Elements-I Date : 22/12/2022

Duration : 90 Minutes Max Marks : 30

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	СО	K- Level
	PART-A			
1(a)	Prove that a square has equal strength in both compression as well as in shear.	6	CO3	К3
(b)	Design a flange coupling to connect to a motor with following specification. Take pump output = 3000Ltrs/min, Total head =20m, Pump speed = 600rpm, Efficiency = 70%. Select C40 steel for shaft, C35 steel for key with factor of safety 2. Assume allowable stress in Cast Iron flange as 15Mpa.	12	CO3	К3
	OR			
2(a)	A rectangular key of 15mm width and 12mm thickness is required to transmit a torque of 800N-m from a shaft of 40mm diameter. Taking allowable values of stress in shear and compression as 58Mpa and 110Mpa respectively. Find the length of the key required.	6	CO3	К3
(b)	Design a pin type flexible coupling to transmit 10KW at 500rpm. Assume C40 steel for shaft, pin, keys with σ_y =328.6Mpa & FOS=2. Flange is made up of Cast iron with σ_{ut} =124.5Mpa	12	CO3	К3
<u>.</u> E	PART –B			
3(a)	Derive an expression for Impact stress induced due to Impact bending load.	6	CO2	К3
(b)	A simply supported beam of 5m span has to resist an impact of 6KN falling under gravity with a velocity of 30m/min at its center. The beam is of box section of 40mm depth. The moment of inertia of box section is 10 ⁸ mm ⁴ , the modulus of elasticity is 210Gpa. Determine the maximum stress induced in the beam and compare that with static stress.	6	CO2	КЗ
	OR			
4(a)	A machine element in the form of a cantilever beam of span 800mm has a rectangular cross section of depth 200mm. The free end of a beam is subjected to an impact from a transverse load of 1KN, that drops on to it from a height of 40mm. Selecting C-30 steel with yield strength σ_y =294.2Mpa and choosing Factor of Safety as 2.5,	6	CO2	К3

		1.8		AND THE
	determine the width of rectangular cross section.		A-1.	8 5 14 1 21
(b)	A stainless steel beam of span 1000mm is subjected to central load of 20KN, that falls from a height of 20mm. The beam has a rectangular	6	CO2	К3
	cross section of 60mm X 200mm. The material of the beam has a modulus of elasticity of 207Gpa. Determine Maximum normal stress,			^ = x
	Maximum static deflection, Impact factor, Maximum Impact normal stress, Maximum Impact deflection			

ANTLICOMAR. A)
Name & Signature of
Course In charge

Manhul

(Markethylan)

Name & Signature of

Module Coordinator

HOD ME

Principal

K S INSTITUTE OF TECHNOLOGY, BANGALORE-109

DEPARTMENT OF MECHANICAL ENGINEERING ACADEMIC YEAR-2022-23

SCHEME OF EVALUATION

Internal: II

Subject: DME-I

Subject code: 18ME52

Sem & Section: V Date: 22/12/2022 Max. Marks: 30 Duration: 90 MINS

Question No:	Points to be Covered	Marks Split	Total Marks
(la)	THE TENDED AND THIS = Z bhd -> @ TEDDED THIS TEDDED THIS TEDDED THIS TEDDED TO THE TEDDE TEDDED TO THE TEDDE TEDDED TO THE TEDDE TEDDE TEDDE TEDDE TEDDE TED	6311.	о6 П.
# 1	M+c= TS = M+c= M+c	HEO	f gg r
(IP)	P= (DEH) = 922.833 × 103 N mm H= 9550 N = 822.833 × 103 N mm	15 M	
	TH = TICKS TO ES = det = 28mm// HEY => b=8mm; h=7mm; L=29.91mm. }	७ Ң,	12 H.
	Bir i i=4: Di = logyim, al= Tilling	18 35 F	
-	HUB: - D= 67MM; L=537MM; D=145MM; X=7MM. J=7	63H	06H
(2a)	THC= TEHLO => L=60.606HH;	63H	
(36)	THE SOUN IGIOCON-HM - THE TRUSHINGS - SHOW - SOMME	osh.	
		04H	124.
	1.50 N/mm2 0 P= 4.62N/mm2, 0 mad = 3 1010		
	1 = 9. rsuy	0411	
	81 sages in House, . 23 = 6.08 N/mm5.		

Question No:	Points to be Covered	Marks Split	Total Marks
(%)	workdown = fosce x Distance => W: & (h+4) } =>	0351	
	A = 3(N+A), A => A3 - (0A)A, - 34A=0. A neA = M(N+A) => A, = \frac{A8ET}{18ET} => A(2 + A) = \frac{A(1)}{18ET} MAY YOUNG = 2000 x D1,8401400 => M= 2 (44A) MAY YOUNG => M= 2 (44A)	ο2Π)	obM
	WX 8FW = 4X 8FY 6 14 VI + 3h &	· M80	
	कर् = ०० (म ग्रामक्ट्री.	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Art I -
(36)	10= HPA => 1.2N/WWZ; => 4= 19-2NUM; 3=>	160 m	0611
	4= WL3 => 0.744 MM. The solution of The 6.9367. Je)	0311.	GU.
11.	T'S = 10.403W/MM2, 1120	MEOSM	i e e e e e e e e e e e e e e e e e e e
(4a)	T > B SEE DIE MAN	0311	NH
	のとのからけりはからま (Dの8081)= 11+65:031)	· 1150	.06M
	b=69.64mm	Sand Strain	
(46)	4P= 4PA => 15.2 h/mms	. 92H.	
	4- WK3 -> 0.050MM. MINING	OI H.	
	021= 0-(1+12+303=> 388.94 N/mm; ->	oll.	06H
12:	IF= 05 = 89.3016 11 11 11 11 11 11 11 11 11 11 11 11 1	DIM	
	To near 1 als marks to the second	OIM	
	41= 4 git 51+25) = 1.450mm.	10 1000	
	From the second	0.99, 62	
	· A A A A A A A A A A A A A A A A A A A		
		31	

Signature of Course Incharge

Signature of HOD/MED

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Design of Machine Elements-I
Course Code	18ME52
Course Incharge	Anilkumar A
Academic year	2022-2023
Semester	V
CIE	2 nd
Set	A□ B 🖼
S	crutiny parameters
Whether questions are according to assessment plan?	Yes ☑ No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes ☑ No ☐; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ☑ No ☐ ; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No ☐ ; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes № No □; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes ☑ No □; If No, Suggestions:
Difficulty level	Very High □ High ☑ Moderate □ Low□
Percentage of Similarity questions in Set A & B	121.
Final decision	Accepted without corrections -
	Accepted with minor corrections□
	Not accepted□

Signature with date of CIE Question paper setter

Mame and Signature with date of CIE Question paper Scrutiniser

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 SECOND INTERNAL TEST QUESTION PAPER 2022-23 ODD SEMESTER

CTT. D	
SET: B	USN

Degree : B. E., Semester

Branch : Mechanical Engineering Course Code : 18ME52 Course Title : Design of Machine Elements-I Date : 22/12/2022

Duration : 90 Minutes Max Marks : 30

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	СО	K- Level
	PART-A			
1(a)	Find the dimensions of a square tapered key to transmit 20KW at 1800rpm. Allowable shear and compressive stresses are 80Mpa and 170Mpa. Also calculate the axial force required to drive the keyway.	6	CO3	КЗ
(b)	Design a flexible flanged coupling to transmit a power of 25KW at speed of 500rpm. Assume Shaft, Keys, Pins are made of C40 steel with FOS=2 and flanges are made of Cast iron with FOS=6. Assume bearing pressure=0.5Mpa.	12	CO3	К3
	OR		2.	
2(a)	Derive the equation for torque transmitted by the key in compression and shear.	6	CO3	К3
e minorità -	It is required to design a protected type rigid flange coupling to connect two shafts. The shaft transmits 37.5KW at 180rpm to the			। स
(b)	output shaft through coupling. Starting torque is 15 times the rated torque. The shaft and key are made of steel wit yield strength 380Mpa and FOS=2.5. Flanges are made of Cast Iron FG200 with FOS=6. Assume ultimate shear as on half of the ultimate tensile strength.	12	CO3	К3
	PART -B			, <u>F</u>
-	A weight of 1KN is dropped from a height of 50mm at the free end of a cantilever beam of effective length 300mm. Determine the square cross section of the cantilever beam if the allowable stress for the material is 80Mpa.	6	CO2	К3
(b)	A power hammer of mass 500Kg strikes the angle supported at the midpoint of the beam simply supported at its ends 5m apart, the height through which the angle falls is 10cm. Determine the width of the rectangular cross section of beam if the depth of the cross section is 200mm. Take E=210 X 10 ³ Mpa and C-30 steel with FOS=2.5.	6	CO2	К3
	OR			
n(a)	Derive an expression for Impact stress induced due to Impact bending load.	6	CO2	К3
(b)	A beam of 40mm depth and I cross section is resting on two supports	6	CO2	K3

				- 100
010,	that are 6m apart. It is loaded by a weight of 5000N falling through a	Sept. Trend	" IN THE SECTION OF T	
1	height of 10mm and striking the beam at mid point. The moment of			1964
V/ T.	Inertia of the I section is $12 \times 10^7 \text{mm}^4$. Take $E = 210 \times 10^3 \text{Mpa}$.	1.70	. + . (5)	
	Determine: (i) Impact factor, (ii) Instantaneous maximum deflection,	17.7		
	(iii) Instantaneous maximum stress, (iv) Instantaneous maximum load.		1	

(ANILHUMAR.A)
Name & Signature of

Course In charge

(M. Waranwerms)
Name & Signature of **Module Coordinator**

Principal
Sulutid

K S INSTITUTE OF TECHNOLOGY, BANGALORE-109

DEPARTMENT OF MECHANICAL ENGINEERING **ACADEMIC YEAR-2022-23**

SCHEME OF EVALUATION

Internal: II Subject: DME-I

Subject code: 18ME52

Date: 22/12/2022

Sem & Section: V See Learning A Land and Max. Marks: 30 **Duration: 90 MINS**

Question No:	Points to be Covered	Marks Split	Total Marks
(10)	ut= 4220 x N = 106.11 x 103 N - WW.	Meo	
	Prom L. 12. 1 => p= p= ELLUM. Prom L. 12. 1 => p= p= ELLUM. Prom L. 12. 1 => p= p= ELLUM. 3 =>	02 M	06П
775	Prom T. 17.4 => b= n= 20.09mm. MIS = \(\frac{15}{25} \) b \(\frac{1}{25} \) \(1	Mgo	H
	Axial poxe => Fa = 2Mg+ + F starr B -	OIH.	
(10)	H=9550XN = 477.8 X 103N-MM.	08M.	
	$M_{t} = \frac{1}{16} n cs = dotd = 32 mm$		
	- 60mm	MBO	1277
17	Hay b= h = 10mm; L= 60mm; Tb=99.48179-> Creat 800 51000000> Z=49.7411 Pa; Tb=99.48179->	01H	
		084	
	Pined: 1= 4; dp= 16 mm;	DOH	
	Pined: 1=4; dp=16mm; FCD= Bubh: d1=86mm; F=18hb; Lb=70.74mm;> FLasticyol. D3=176mm; t=01mm;	BAM	
(\$4)	Compression Compression	•3∏.	
	Htc= rehid	17	o6M.
	Bheari. The = Fa x Radius => TEAd => Zo bh & ?	03 M	
	My= Table		1.5
(%)	M1 = 9550XN => 1989583 34N.MU 114Max= 298975017	084	
	M = TIN3 NZ = / deld = 65	orn	IZ H.
	Hay: b= 18mm; h=11mm; L= 100.8408HW. BOAG: i=6; D1=80450HM=180MM; all=0.50=14MM.3	0411	III.
	HAP DET. 1= 92 401 NIMMS P= 334.2MM; 4=195234 HAP DET. 7= 92 401 NIMMS HAP DET. 7= 92 401 NIMMS	04 M	
3	01 81800;		

Question No:	Points to be Covered	Marks Split	Total Marks
(ph)	most Dew ph Edinfrogens craftly => No coels	Ø ₽1.	
	h= 800(41A1) x T3 => A1 = 3(41A1)A \$\frac{1}{4}\conft = 10(41A1) => \conft = \frac{1}{8}\conft = \frac{1}{168EI} \conft \conft \conft = \frac{1}{168EI} \conft \co	HB	PH.
	Ap = A & 1 + 11+3p 5. To = 1 8EA (1+ 11+3p 3)	०२म	MI
(dg)	ap= 20[1+11+3p] = +.80 MMM5, 20= 4PA = 1.52 MM5	DAM.	
	IF= \(\frac{1}{4}\) = 5.83; \(\frac{1}{4}\) 1+\(\frac{1}{4}\) = 5.8116mm\(\frac{1}{4}\)	⊘3 ∏.	6H.
	IF= 10 = 24187N.	MIOIM	£dr
(39)	2P, = 2P [+ 1 1+3P] => 2P = \frac{T}{4PA} = 1.8 \text{10p}	- 2H	ρи.
	A= 7 E13 = 814.582×103	HBO	
	D= h=313 DNM		
(36)	T => 919.04	La properties	
Ita	4- F13/ → 91.43/ 48EI → D.		
	18= 10 & 1+ 1+ 30 g.	II . II .	
	P= 121.8013MM.)		TAT T
1 11	BE 151 Street 111 and the middle	5 Am 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	The sould be a second with the second of the	L Milk	
	The state of the s	S. Lag.	

Signature of Course Incharge

Signature of HOD/MED

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Design of Machine Elements-I
Course Code	18ME52
Course Incharge	Anilkumar A
Academic year	2022-2023
Semester	V
CIE	3 RD
Set	A♥ B□
Sc	rutiny parameters
Whether questions are according to assessment plan?	Yes ☑ No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes ☑ No ☐ ; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ☑ No ☐; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No □; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes ☑ No ☐; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes □ No □; If No, Suggestions:
Difficulty level	Very High □ High □ Moderate 🖭 Low□
Percentage of Similarity questions in Set A & B	40%
Final decision	Accepted without corrections
	Accepted with minor corrections□
	Not accepted□

Signature with date of CIE Question paper setter

Mame and Signature with date of CIE Question paper Scrutiniser

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 THIRD INTERNAL TEST QUESTION PAPER 2022-23 ODD SEMESTER

SET: A	USN	

Degree : B. E., Semester

Branch : Mechanical Engineering Course Code : 18ME52
Course Title : Design of Machine Elements-I Date : 18/01/2023

Duration : 90 Minutes Max Marks : 30

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	со	K- Level
	PART-A		,	
1(a)	Explain Caulking & Fullering with a neat sketch.	5	CO4	K2
(b)	Design a triple riveted longitudinal double strap butt joint with unequal strap for a boiler. The inside diameter of the longest course of the drum is 1.3m. The joint is to be designed for a steam pressure of	10	CO4	K4
	2.4N/mm ² . The working stresses to be used are σ_t =77Mpa for plate material in tension, τ =62Mpa for rivet material in shear, σ_c =120Mpa for rivet material in compression. Assume joint efficiency of 81%.			F - 8
That T	OR	*		
2(a)	Explain in brief types of failures in riveted joints.	5	CO4	K2
2(b)	An air vessel of 1m diameter has triple riveted lap joint (Zig-Zag type), the maximum air pressure in the vessel is 2Mpa. Design the riveted joint if the safe working stress in tension, Shear and compression are 125Mpa, 90Mpa & 165Mpa.	10	CO4	K4
3(a)	PART –B Derive the Expression for Torque required to lift the load on a square threaded screw.	7	CO5	К3
	A weight of 500KN is raised at a speed of 6m/min by two screw rods with square threads of 50X8 cut by them. The two screw rods are driven through bevel gear driven by a motor, Calculate, i) The torque required to raise the load ii) The speed of rotation of the screw rod assuming the threads are of double start. iii) The maximum stresses induced on the cross-section of the screw rod.	8	CO5	K4
	iv) The efficiency of screw drive. v) The length of nuts for the purpose of supporting the load vi) Check for overhaul.			

4(a)	Design a screw jack with a lift of 300mm to lift a load of 50KN. Select C40 steel ($\sigma_y = 328.6MPa$) for screw and soft phosphor	15	CO5	K4
	bronze ($\sigma_{ut} = 345MPa$, $\sigma_y = 138MPa$) for nut.			

(AniMomon. A)
Name & Signature of
Course In charge

Name & Signature of Module Coordinator

HOD ME

Principal

K S INSTITUTE OF TECHNOLOGY, BANGALORE-109

DEPARTMENT OF MECHANICAL ENGINEERING ACADEMIC YEAR-2022-2023

SET-A

SCHEME OF EVALUATION

Internal: III Subject: DME41 Subject code: 18ME52

Sem & Section:V Date:18/01/2023 Max. Marks:30 Duration: 90 M

Question No:	Points to be Covered	Marks Split	Total Marks
(10)	Countries A Color Englowed took of the Res	8-8M }	osH'
	LOVANTER TO BE A PROSENT TO THE	a;sh J	
(19)	Finaling thickness & shotch	2010).	10M ·
	Finding awapture thickness, length & dea of sivet >	BH.	
	Finding efficiency	C He	
Com	- Kind not Plane -> [[2] hale is Plant of tochole	24	
(34)	1	1.311	05M.
4: T	Marie 1 may 2 miles and 1 miles and 2 miles	harry 1	· KAT
	Company of gives Files Ballure persons of	1.5HU	
(36)	Finding thicknows & shorting a Joins ->	EH.J	
	- 10 Dia at Bluet & diver hole dia->	2 H.	IOH.
	Finding Longitudinal Pitch, townsverse Pithe?	3H.	(0)1
1	11 22 mousin was the maken	211	
	Finding Efficiency	V 110	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	The many of many	There of the	
	The second of many of and of	E A A STORY	

Question No:	Points to be Covered	Marks Split	Total Marks
(34)	F. H. R. n. Cost + Rosins	0447	
	inn vertical compensat		0711
,	W= Rriosel-MRnsmd. W= Rriosel-MRnsmd. W= tund } > M+5= Fx d ; M= tund } M15= W d tun(b-6)	озн	921)
(3P)	Tooque => M4 = w do [M+ 10ms] + Mede] = 2647500	OZH	
	SPORd=> n= 1 = 6000	old .	olH.
(1)	efficiency => n= obtand = 20.8%	05H	
	laryth of Mut; - 1x=1P=4WP = (56 mm.	OZM	
1 1 1	andition por over hauting tame> M	OIM	
(4)	Designal Borero: AC= 707mm2, d= 36mm; d=30mm, d0=33mm; chut = 36.5mm. Greatenin Screen: Track = 88.417/mm2; Zmax= 47.051/m2	3 BH	
	Oco = Takka) Oce 3 14 13 12 010	ONH.	15M.
	Buckling Feo = 157048.4552 N ->	02 H.	
	Harridge, Ln = 1769mm; dh=33mm; -> Harridge, Ln = 1769mm; dh=33mm; +=6mm; t=6mm; t=6m	03H'	
	Efficiency: $n = 13.55\%$; Efficiency: $n = 13.55\%$; Sody: $n = 13.55\%$; $n = 1$	ORM.	

Signature of Staff

Signature of HOD

Bangalore - 560109

DEPARTMENT OF MECHANICAL ENGINEERING

CIE Question paper Scrutiny format

Course Name	Design of Machine Elements-I
Course Code	18ME52
Course Incharge	Anilkumar A
	2022-2023
Academic year	V
Semester	
CIE	3 RD
Set	AD BD
Se	crutiny parameters
Whether questions are according to assessment plan?	Yes ☑ No□; If No, Suggestions:
Whether questions prepared are within the covered syllabus?	Yes ☑ No ☐; If No, Suggestions:
Whether all questions are mapped to CO/PO properly?	Yes ☑ No ☐ ; If No, Suggestions:
Whether questions framed are according to Blooms level?	Yes ☑ No ☐; If No, Suggestions:
Whether marks distribution for each question are correct?	Yes □ No □; If No, Suggestions:
Whether questions paper follows the format displayed?	Yes □ No □; If No, Suggestions:
Difficulty level	Very High □ High □ Moderate □ Low□
Percentage of Similarity questions in Set A & B	401.
Final decision	Accepted without corrections
	Accepted with minor corrections□
	Not accepted□
	THO WATER OF THE PARTY OF THE P

Signature with date of CIE Question paper setter

Name and Signature with date of CIE Question paper Scrutiniser

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 THIRD INTERNAL TEST QUESTION PAPER 2022-23 ODD SEMESTER

SET: B		USN		
Degree Branch Course Title Duration	: B. E.,: Mechanical Engineering: Design of Machine Elements: 90 Minutes	Semester Course Code -I Date Max Marks	:	18/01/2023

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	со	K- Level
	PART-A			
1(a)	Explain in brief types of failures in riveted joints.	5	CO4	K2
(b)	Design a longitudinal joint for a boiler of 1m diameter, subjected to a steam pressure of 2Mpa. Select double riveted joint with double cover straps, with a required efficiency of 75%. Take the following allowable stress. Tensile stress (σ_t =80)Mpa, shear stress (τ =60Mpa), Compressive stress (σ_c =120Mpa).	10	CO4	K4
	OR			
2(a)	Explain Caulking & Fullering with a neat sketch.	5	CO4	K2
(b)	A boiler shell of 1m diameter has a circumferential triple riveted lap joint. The maximum pressure in the boiler is 2Mpa. Design the riveted joint if the allowable stress in tension, shear and compression is 120Mpa, 80Mpa and 160Mpa respectively.	10	CO4	K4
	PART –B		, L	ne e
3(a)	Briefly Explain Self locking and Overhauling. Derive torque required to raise the load.	7	CO5	К3
(b)	A Double threaded power screw with trapezoidal ISO thread is used to lift a load of 300KN. The nominal diameter is 100mm and the pitch is 12mm. The coefficient of friction is 0.15. Neglecting collar friction, Determine (i) Torque required to lift the load (ii) Torque required to lower the load (iii) Efficiency of the screw (iv) Check whether the screw is self locking or Overhauling.	8	CO5	КЗ
	OR			
4(a)	Design a screw jack with a lift of 300mm to lift a load of 50KN. Select C40 steel ($\sigma_y = 328.6MPa$) for screw and soft phosphor bronze ($\sigma_{ut} = 345MPa$, $\sigma_y = 138MPa$) for nut.	15	CO5	K4

Name & Signature of

Course In charge

(Anilkumasi. A)

Name & Signature of

Module Coordinator

K S INSTITUTE OF TECHNOLOGY, BANGALORE-109

DEPARTMENT OF MECHANICAL ENGINEERING ACADEMIC YEAR-2022-2023

SET-B

SCHEME OF EVALUATION

Internal: III Subject: DME-I

Subject code: 18ME52

Sem & Section:V Date:18/01/2023

Max. Marks:30 Duration: 90 M

Question No:	Points to be Covered	Marks Split	Total Marks
(Iv)	Shows in a Hoster. The cones were personal.	rem }	5M.
	Companying of giness Salma Batting of	1.2H	te, i
(41)	Dia of sived = 611 = 6/17 = 8/mm; of n = 88.5 mm.] -> One of sived = 611 = 6/17 = 8/mm; of n = 88.5 mm.] -> The charge => p = \frac{9100}{2100} = 17mm & 8/18/10 = 8/mm.	3H \	1011.
(20)	Calllying: * NEW Point Englatoolat 70-75	2H.)	05 M
'High I	Thickness b= DiPs = 6mm; Sketch	34.J	
	Dia=d=61/2= 16mm & oh=17mm.	०३ मः	loH'
	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
<u> </u>	12) TO SAN PER MARINE PS		

Question No:	Points to be Covered	Marks Split	Total Marks
(30)	Set toching => P>L Set toching => P>L Set toching => P>L	9H')	
	Royaldondal focus: F= MRnCoSL + Rn Sin & WEXTERN COMPONENT	03Н.	07 M·
I-1	$\frac{W = Rn \cos d - MRn \sin d}{W = Rn \cos d - MRn \sin d}$ $\frac{F}{W} = \frac{Rn \cot d}{W + Rn \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = \frac{Rn \cot d}{R \cot d} = \frac{Rn \cot d}{R \cot d}$ $\frac{F}{W} = Rn \cot $	०३म)	
(3p)	Toayue! - Mes=w da ton(otd)=330 x 104N-mm>	ORM)	
	Torque to Locset Local! Mts=W de tom (\$-8)=957.88x1034.	05H.	08 M.
11	Efficiency: $S = \frac{(H+tand)}{(H+tand)} d3$ = 34. 77.	oam [
	Condition for self Locking tand > 1	Manual	
(u)	Design of Sound: Ac= FOTAM? d=36MM; d1=30MM; d2=30MM; dnot=36.5MM.	O MALLEY	Sign of the second
	Journead HI = STAM , Da = 65 MM; H= 15 MM;	03M.	15H·
	Buckling: For = 157048.7552 N. Handle: Ln = 17654M; dn = 33M N>	oam.	(G)
Thy.	Hondle: Ln = 1700mm; Dq=14/mm; Horborn; J=10mm? EHiciona; - N = 13-557: Thiciona; - N = 13-557:	03H	
	DA = 382WM; 41= 30WW; 13=10MW.] Booth ; - H= 120WW, D2=100WW; D6=120WW.] Etherographical:	02H.	

Signature of Staff

Signature of HOD